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In non-premixed turbulent combustion the reactive zone is localized at the stoichio-
metric surfaces of the mixture and may be locally approximated by a diffusion flame.
Experiments and numerical simulations reveal a characteristic structure at the edge
of such a two-dimensional diffusion flame. This ‘triple flame’ or ‘edge flame’ consists
of a curved flame front followed by a trailing edge that constitutes the body of
the diffusion flame. Triple flames are also observed at the edge of a lifted laminar
diffusion flame near the exit of burners. The speed of propagation of the triple flame
determines such important properties as the rate of increase of the flame surface in
non-premixed combustion and the lift-off distance in lifted flames at burners. This
paper presents an approximate theory of triple flames based on an approximation
of the flame shape by a parabolic profile, for large activation energy and low but
finite heat release. The parabolic flame path approximation is a heuristic approxima-
tion motivated by physical considerations and is independent of the large activation
energy and low heat release assumptions which are incorporated through asymptotic
expansions. Therefore, what is presented here is not a truly asymptotic theory of triple
flames, but an asymptotic solution of a model problem in which the flame shape is
assumed parabolic. Only the symmetrical flame is considered and Lewis numbers are
taken to be unity. The principal results are analytical formulas for the speed and
curvature of triple flames as a function of the upstream mixture fraction gradient in
the limit of infinitesimal heat release as well as small but finite heat release. For given
chemistry, the solution provides a complete description of the triple flame in terms of
the upstream mixture fraction gradient. The theory is validated by comparison with
numerical simulation of the primitive equations.

1. Introduction
In many engineering applications of turbulent combustion, fuel and oxidizer are

not perfectly mixed before entering the combustion chamber. Large-scale unsteady
movements together with micro-mixing mechanisms subsequently bring fuel and
oxidizer into contact where they react within a thin reaction zone (Bray 1996) that
may be locally approximated by a diffusion flame. A typical example is given in
figure 1 which shows an instantaneous reaction rate profile from a two-dimensional
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Triple-layer
system

Diffusion flame

Edge flame

Figure 1. Isolines of reaction rate in a two-dimensional simulation of combustion in pockets of
fuel and hot air in freely decaying turbulence (Vervisch & Poinsot 1998).

simulation of the propagation of combustion in pockets of fuel and hot air in freely
decaying turbulence (Vervisch & Poinsot 1998).

A generic picture of such a laminar diffusion flame was given by Lin̄án & Crespo
(1976) for a counterflowing fuel and oxidizer stream with a single-step chemical
reaction. The flame is localized at the stoichiometric surface where fuel and oxidizer
are mixed in stoichiometric proportions, and their analysis provides a full description
of the flame in terms of the local mixture fraction gradient normal to the flame
front. In this quasi-steady diffusion flame, the gradients of chemical species and
temperature are such that the amount of heat diffusing away from the reaction zone
is exactly balanced by the heat produced by combustion. Should the local gradient
of temperature become too large, the rate of chemical reactions is not able to keep
up with the heat losses and quenching occurs.

Applying this description to the above picture of non-premixed turbulent combus-
tion, one expects that the reaction zone would be confined to the highly convoluted
stoichiometric surface; however, the reaction rate would not be uniform over the
surface. Instead, there would be zones where excessive thermal gradients cause local
extinction of the flame. This is shown schematically in figure 2. Such enhanced ther-
mal gradients are expected to occur in a turbulent fluid where velocity fluctuations
would cause the flame to stretch. When these thermal gradients are subsequently
reduced below the quenching limit through turbulent fluctuations, the diffusion flame
may propagate along the stoichiometric surface, re-igniting the quenched zones. The
characteristic flame structure that is observed at the edges of the stoichiometric sur-
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Figure 2. Sketch of the conditions for the development of partially premixed edge flames in
non-premixed turbulent flames. χ = D|∇Z | is the mixture fraction dissipation rate and χq the
quenching limit (Vervisch & Poinsot 1998).

face bordering the extinction zone can be modelled locally by a triple flame. Such
structures are clearly visible in figure 1.

The simplest laboratory situation where a triple flame may be observed is at a
lifted flame downstream of a splitter plate separating fuel and oxidizer. The leading
edge of this lifted flame is a partially premixed front that tends to propagate towards
the fresh gases upstream but is stabilized by the counterflowing stream blowing off
the splitter plate. Since premixed flame speeds are maximum for stoichiometric or
near stoichiometric conditions, the parts of the flame front on the stoichiometric line
tend to move faster than those further out, causing the flame front to be curved with
the convex side facing the splitter plate. Behind this partially premixed front, two
streams, one depleted of fuel and the other of oxidizer, come together and burn as
a diffusion flame. This trinity consisting of a partially premixed fuel-rich branch, a
partially premixed fuel-lean branch and a diffusion flame anchored behind it is called
a ‘triple flame’. Figure 3 shows an expanded view of a single triple flame as revealed
by numerical simulation of the basic equations. The isocontours denote constant
reaction rates.

Experimental, theoretical and numerical studies have been performed to explore
both the conditions leading to the existence of triple flames and their properties. The
first reported observation of the triple flame in the laboratory is due to Phillips (1965).
Kioni et al. (1993) have studied the development of a partially premixed front in a
mixing layer without velocity shear using a burner designed to create a linear profile
of fuel mixture fraction in a mixture of fuel and air. Measurements and calculations of
species distributions within the edge of a lifted laminar axisymmetric diffusion flame
have been presented by Plessing et al. (1998). Choi, Ko & Chung (1998) have also
observed triple flames in experimental investigations of the characteristics of flame
propagation around a non-premixed vortex ring. From direct numerical simulations
(DNS) of the autoignition of non-premixed turbulent mixtures, Domingo & Vervisch
(1996) have concluded that triple flames play an important role in the spreading of the
reactive zones. Also using DNS, Favier & Vervisch (1998) have investigated the effects
of edge flames and triple flames in turbulent flame lift-off. Numerics was also utilized
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Figure 3. The structure of an isolated propagating triple flame as observed in direct numerical
simulation. The contours are isolines of heat release or reaction rate (Ruetsch et al. 1995).

by Ruetsch, Vervisch & Liñán (1995) to address the relation between heat release
and triple-flame velocities, and by Echekki & Chen (1998) to study the chemical
structure of methanol–air triple flames. Theoretical investigations were undertaken
by Buckmaster & Matalon (1988) to study Lewis number effects, theoretical results
on propagation velocity and shape of triple flames were derived by Dold (1989) and
Hartley & Dold (1991) and edge-flame holding was studied by Buckmaster & Weber
(1996).

The first theoretical derivation of the speed of propagation of a triple flame is due
to Dold (1989). In this analysis Dold assumed the fuel mixture fraction gradient to
be weak so that the triple flame would have only a slight curvature. This restriction
was later removed by Hartley & Dold (1991). However, in both analyses, density
perturbations due to heat released in the combustion were neglected to keep the
problem tractable. Nevertheless, the importance of such variable-density effects have
been pointed out by Ruetsch et al. (1995) through analysis of results of numerical
simulation. The present work is an attempt to include at least the lowest-order effect
of such density changes. In the present work, we assume unity Lewis numbers. The
effect of small deviations from unity Lewis numbers have recently been studied by
Daou & Liñán (1998) in the incompressible limit for weakly curved flames.

We first revisit the constant-density case, but using an approach that is different
from that of Hartley & Dold. The essential difference is that, instead of treating the
flame surface as an unknown free boundary, we approximate it by a parabolic profile
(albeit of unknown curvature). While this is reasonable in the immediate vicinity of
the flame tip, it has no formal justification for distances from the flame tip of the
order of or greater than the radius of curvature of the flame front. However, since
the reaction rate drops steeply with distance from the flame tip (see figure 4), it is
hoped that the inaccurate representation of the flame path away from the tip would
have a negligible impact on quantities of physical interest such as propagation speed.
We call this the ‘parabolic flame path approximation’. We then apply the method of
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Figure 4. The reaction rate of a triple flame (vertical axis) as a function of X and Y as observed
in direct numerical simulations (Ruetsch et al. 1995).

matched asymptotic expansions in parabolic-cylinder coordinates, thereby obtaining
closed form expressions for the flame curvature and velocity as well as the temperature
field. Comparisons between these theoretical results and numerical simulations of the
primitive equations are also presented.

The case of small, but finite, heat release is then investigated by treating the density
change as a linear perturbation of the earlier constant-density solution. The deviation
of the flow due to variable-density effects can then be obtained in closed form. This
enables us to calculate the effects of streamline curvature on the flame speed. The
results are consistent with those obtained from numerical simulation of the fully
compressible primitive equations and the qualitative arguments first proposed by
Ruetsch et al. (1995). For a given chemistry, the approximate solution provides a
complete description of the triple flame in terms of a single parameter, the upstream
mixture fraction gradient.

The paper is organized as follows. In the next section the problem is formulated and
the basic equations are given. Appropriate dimensionless parameters are introduced
and the physically relevant region of parameter space is identified. We then introduce
the approximation of low heat release and present a simplified set of equations
describing this situation. The method for introducing the lowest-order correction for
heat release effects is also outlined here. In § 3 we solve the low-heat-release (constant-
density) problem in the limit of large Zeldovich number. Comparisons with numerical
simulation as well as the earlier asymptotic results of Hartley & Dold are presented
here. In § 4 the effect of a density perturbation due to heat release is treated in the
limit of linear theory. Comparisons are presented with numerical simulations of the
primitive equations describing compressible reacting flows. The main results of the
paper are summarized in § 5.
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2. Problem formulation
We consider a simple one-step combustion process where ν0 molecules of a fuel

(molecular mass m0) react with ν1 molecules of an oxidizer (molecular mass m1)
to form νp product molecules (molecular mass mp). The reactants and products are
assumed to be in the gaseous phase. Most combustion processes in nature and in
industry are multi-step processes involving a fairly large number of intermediate
species. The restriction to a single-step process is made in order to have a tractable
problem. Finally, we will only consider the case of unity Lewis number (that is,
temperature and each of the two species diffuse at the same rate). This enables one
to express the species concentrations as a linear combination of just two variables:
the temperature, which evolves according to an advection-reaction-diffusion equation,
and the mixture fraction, which evolves like a passive (non-reactive) scalar.

2.1. Basic equations

The time evolution of the mass fractions of the two reacting species, Y0 (the fuel) and
Y1 (the oxidizer), is described by

ρ
DYi
Dt

= Di∇2Yi − νimiω, (2.1)

where i = 0 or 1, D/Dt = ∂/∂t+ u · ∇ is the material derivative, ρ and u are the fluid
density and velocity, ω is the number of reactions in unit volume per unit time and Di
is the mass diffusivity of species i. The evolution of the temperature, T , is described
by

ρcp
DT

Dt
− Dp

Dt
= DT∇2T + Qω, (2.2)

where p is the pressure, cp the specific heat at constant pressure referred to unit
mass of gas, Q is the amount of heat released per reaction and DT is the thermal
conductivity. The Lewis numbers will be assumed unity in this work so that

D0

ρ∞
=
D1

ρ∞
=

DT

ρ∞cp
≡ k, (2.3)

where ρ∞ is the density of unburnt gas far upstream (assumed constant). The effect on
the flame propagation speed of non-unity Lewis numbers has recently been presented
for weakly curved flames (without heat release) and Lewis numbers close to unity by
Daou & Liñán (1998). The equation of state is that of an ideal gas,

p =
ρkBT

m
, (2.4)

where kB is Boltzmann’s constant and m is the mean molecular weight. For the
reaction rate, ω, we assume the well known Arrhenius law (Liñán & Williams 1993):

ω = Aρν0+ν1Y ν0

0 Y
ν1

1 exp (−Ta/T ), (2.5)

where Ta is the activation temperature (a constant for a given reaction) and the pre-
exponential factor A can in general have a weak temperature dependence. However,
we will take A to be constant for simplicity. The density changes are coupled to the
velocity field through the equation of mass conservation

∂ρ

∂t
+ ∇ · (ρu) = 0. (2.6)

It follows from the momentum equation that the pressure fluctuation (p−p∞)/p∞ ∼
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M2, where p∞ is the upstream pressure and M is a Mach number defined as the ratio
of flame to sound propagation speeds. Typically M � 1 in the problems we are
interested in (for example, the burning speed of a stoichiometric mixture of pure
methane and air under standard laboratory conditions is ≈ 0.4 m s−1 corresponding
to M ≈ 10−3). Therefore, to a very good approximation, the density can be expressed
as a function of temperature,

ρ =
mp∞
kBT

, (2.7)

and, the Dp/Dt term in (2.2) may be dropped, so that the temperature equation
becomes

ρcp
DT

Dt
= kρ∞cp∇2T + Qω. (2.8)

We will consider the problem from a frame of reference in which the triple flame is
stationary (see figure 3). The origin of the coordinate system is fixed at the tip (triple
point) of the curved flame front and a uniform flow, U∞x̂, is incident from x = −∞.
Clearly, U∞ is also the propagation speed of the triple flame in a frame in which the
fluid far from the flame is stationary. Far upstream (x → −∞) we assume that the
fuel mass fraction varies from Y0 = 1 in the fuel stream (y → +∞) to Y0 = 0 in the
oxidizer stream (y → −∞). Similarly, the oxidizer mass fraction varies from Y1 = 1
(y → −∞) to Y1 = 0 (y → +∞), such that

Y0(−∞, y) + Y1(−∞, y) = 1 (2.9)

if the reactants are not diluted with an inert species. The fuel and oxidizer are assumed
to be at the same constant temperature, T = T∞, far upstream and the density far
upstream is also a constant, ρ = ρ∞. The fuel mixture fraction, Z , is then

Z =
rY0 − Y1 + 1

1 + r
, (2.10)

where r = (ν1m1)/(ν0m0). Clearly, Z = 1 in the fuel stream, Z = 0 in the oxidizer
stream and Z = Zs = 1/(1 + r) under stoichiometric conditions.

It follows from (2.1) and (2.10) that Z evolves as a passive scalar:

ρ
DZ

Dt
= kρ∞∇2Z. (2.11)

By eliminating the source terms from the pair of equations (2.8) and (2.1), it may
be shown that, the ‘Shvab–Zeldovich variables’ (Liñán & Williams 1993) Hi = T +
QYi/(νimicp) also evolve as a passive scalar:

ρ
DHi

Dt
= kρ∞∇2Hi. (2.12)

From (2.10) and (2.9) and the condition that T = T∞ far upstream, it is clear that
Hi far upstream can be expressed as a linear function of Z: Hi = Ai + BiZ where Ai
and Bi are constants. Further, Hi = Ai +BiZ also satisfies (2.12), because of (2.11). It
follows therefore, that Hi = Ai + BiZ throughout the domain. The conditions Y0 = 1
in the fuel stream and Y0 = 0 in the oxidizer stream determine the constants Ai and
Bi. Thus, using the definition of Hi, Y0 and Y1 may be expressed in terms of Z and
T as follows:

Y0 = (T∞ − T )
m0ν0cp

Q
+ Z, (2.13)
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and similarly

Y1 = (T∞ − T )
m1ν1cp

Q
− Z + 1. (2.14)

2.2. Dimensionless variables

In order to identify suitable dimensionless parameters, it is convenient to express
the basic equations in terms of dimensionless variables whose magnitudes are of
order unity. Thus, we introduce the dimensionless density and velocity $ = ρ/ρ∞ and
(U,V ) = (u/U∞, v/U∞) respectively. An appropriate length scale is the diffusion length
k/U∞, so that we introduce the dimensionless coordinates (X,Y ) = (xU∞/k, yU∞/k).
A suitable temperature scale is not T∞ but some measure of the temperature change
across the flame. Clearly, the maximum temperature is reached just behind the flame
front along the stoichiometric line, where the combustion is complete (there is neither
fuel nor oxidizer left in the product stream). This ‘adiabatic flame temperature’, Ts, is
obtained by putting Z = Zs = 1/(1 + r) and Y0 = 0 in (2.13)

Ts = T∞ +
Q

m0ν0cp

1

1 + r
= T∞ +

Q

(m0ν0 + m1ν1)cp
. (2.15)

The dimensionless parameter

α ≡ Ts − T∞
Ts

=

[
1 +

(m0ν0 + m1ν1)cpT∞
Q

]−1

(2.16)

characterizes the temperature rise, or equivalently, the amount of heat released in the
flame. Further, we introduce the dimensionless temperature, Θ, defined as

Θ =
T − T∞
Ts − T∞ . (2.17)

A second important dimensionless parameter is the Zeldovich number, β, defined as
(Liñán & Williams 1993)

β ≡ αTa
Ts
, (2.18)

a measure of the sensitivity of the reaction rate (2.5) to temperature. In terms of these
dimensionless variables, (2.8) may be written as

$

(
U
∂Θ

∂X
+ V

∂Θ

∂Y

)
=
∂2Θ

∂X2
+
∂2Θ

∂Y 2
+λ$ν0+ν1Σ(Z/Zs,Θ) exp

[
− β(1−Θ)

1− α(1−Θ)

]
(2.19)

where Σ is defined by

Σ(x, y) ≡ (x− y)ν0 [(1− x) + r(1− y)]ν1 , (2.20)

and λ is defined by

λ =
kQA

cpTsα

ρν0+ν1−1∞
(1 + r)ν0+ν1

exp (−β/α) 1

U2∞
. (2.21)

The equation for the mixture fraction Z , (2.11), becomes

$

(
U
∂Z

∂X
+ V

∂Z

∂Y

)
=
∂2Z

∂X2
+
∂2Z

∂Y 2
(2.22)
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and the density is related to the temperature through (2.7), which may be re-expressed
in dimensionless form as

$ =
1− α

1− α(1−Θ)
. (2.23)

Variations in density due to temperature changes modify the velocity field through
the continuity equation, (2.6), which may be written in dimensionless variables as

∂($U)

∂X
+
∂($V )

∂Y
= 0. (2.24)

Equations (2.19), (2.22), (2.23) and (2.24) are coupled equations for the temperature,
mixture fraction and density fields. These need to be complemented with two equations
for the X- and Y -components of momentum and appropriate boundary conditions,
and these will be discussed later in § 4. In writing these equations the problem has
been assumed steady and two-dimensional.

2.3. Low-heat-release approximation

The reduced set of equations (2.19), (2.22), (2.23), (2.24) are still complex and not
amenable to analytical solution. We will therefore introduce the further approximation
of ‘low heat release’, by which we mean α � 1. In this approximation, the density
variations are sufficiently weak that we may take $ = 1 in (2.19), (2.22), (2.24).
Therefore, the velocity (U,V ) decouples in this approximation from the density, so
that for the velocity field we have the trivial solution U = 1 and V = 0. Equations
for the temperature (2.19) and mixture fraction (2.22) then reduce to

∂Θ

∂X
=
∂2Θ

∂X2
+
∂2Θ

∂Y 2
+ λΣ(Z/Zs,Θ) exp [−β(1−Θ)] (2.25)

and

∂Z

∂X
=
∂2Z

∂X2
+
∂2Z

∂Y 2
. (2.26)

Equation (2.26) is elliptic. However, if Z varies much more rapidly in the direction
perpendicular to the flow (Y -direction) than in the direction of the flow (X-direction)
as in a slowly spreading mixing layer, the first term on the right-hand side may
be neglected. The equation then becomes hyperbolic and its solution is determined
uniquely once the mixture-fraction profile far upstream, Z(−∞, Y ) is specified. If the
spatial extent of the flame (characterized by the flame thickness) is much smaller than
the thickness of the mixing layer, one may assume the mixture fraction profile to
be linear in the neighbourhood of the flame, Z = A + BY (A and B are constants).
The linear profile also happens to be an exact solution of (2.26), though it does not
satisfy the lateral boundary conditions Z → 0 or 1 as Y → ±∞. In this paper we will
assume the linear profile for Z(Y ).

Since the gases far upstream are at a uniform temperature, we have the boundary
condition

Θ(−∞, Y ) = 0. (2.27)

Far downstream of the flame, at a fixed value of Y , the deficient component (fuel or
oxidizer) is completely consumed; thus, Y1(∞, Y ) = 0 for Y > 0, and, Y0(∞, Y ) = 0 for
Y 6 0. These conditions can be expressed in terms of the dimensionless temperature,
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Θ, by using (2.13), (2.14), and (2.17) :

Θ(∞, Y ) =


1− Z
1− Zs if Y > 0

Z/Zs if Y 6 0.

(2.28)

The elliptic differential equation (2.25) with the prescribed values at the boundaries
of the domain define an eigenvalue problem for the parameter λ on the right-hand
side of (2.25). Thus, the flame speed, which is related to λ through equation (2.21), is
to be determined as an eigenvalue of the problem.†

The modification of the flow field due to heat release has important consequences
for the structure and propagation of triple flames (Ruetsch et al. 1995). The lowest-
order equations (2.25) and (2.26) will not show these effects since the modification of
the flow field by the flame has been neglected. Such effects can however be included
by going to the next order in the asymptotic expansion with respect to the small
parameter α; (2.25) and (2.26) are the lowest-order equations resulting from such an
expansion. The corrected density may be obtained from (2.23) by expanding in the
small parameter α:

$ = 1− αΘ + O(α2), (2.29)

where Θ denotes the solution of the pair of equations (2.25) and (2.26). On substituting
(2.29) in (2.24) and retaining only terms that are linear in α, we obtain the following
equation for the correction, (δU, δV ), to the velocity at leading order:

∂(δU)

∂X
+
∂(δV )

∂Y
= α

∂Θ

∂X
. (2.30)

We will return to (2.29) and (2.30) in § 4.

3. Activation-energy asymptotics
The Zeldovich parameter β defined by (2.18) is often moderately large (β ∼ 10 or

larger) for many processes of practical interest. It is therefore useful to study the basic
equations describing flames in the asymptotic limit of β →∞. This limit is known as
‘activation-energy asymptotics’ (AEA). It is clear from (2.25) that, in the limit β →∞,
the source term vanishes, except in the immediate vicinity of the flame front (Θ = 1).
Since the integrated reaction rate must be finite, it is clear that the source term must
become singular in this limit at the flame front (Θ = 1), indicating that the limit must
be treated as a singular perturbation problem (Van-Dyke 1975). Such solutions for
the case of a premixed plane flame are well known (Liñán & Williams 1993).

The AEA analysis was first applied to the triple-flame problem by Dold (1989).
In addition to the assumptions of low heat release (α � 1) and large Zeldovich
number (β � 1), Dold assumed that the mixture fraction gradient at the flame was
weak, specifically, β(∂Z/∂Y ) � 1. The curvature of the flame front is controlled
by the quantity β(∂Z/∂Y ), which for the general triple-flame problem is of order
unity. When β(∂Z/∂Y ) = 0, the triple flame reduces to a planar flame whereas in
the opposite limit of β(∂Z/∂Y ) → ∞, the flame loses the ‘triple-flame’ character
composed of two partially premixed branches and a trailing diffusion flame. Instead,
the partially premixed branches degenerate into a geometrical point. The analysis of
Dold describes a weakly curved triple flame which allows a simplified description. The

† This formulation gives rise to the ‘cold boundary difficulty’, a discussion of which may be found
in Liñán & Williams (1993) and other standard treatises on combustion.
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principal outcome of the analysis was the flame speed and the equation describing
the shape of the curved flame front. The above results were subsequently extended
by Hartley & Dold (1991) to the generic case, β(∂Z/∂Y ) ∼ O(1). However, because
of the difficulty in solving the equation for the temperature field in a ‘free boundary’
type problem (the curved flame front must be determined self-consistently as part
of the solution) the flame speed could not be obtained as a closed form analytical
expression, but had to be deduced by numerically solving an integral equation.

The work of Dold and Hartley & Dold discussed above does not take into account
any effects of density changes due to heat release. The main qualitative effect of
heat-release-induced density changes in triple flames have been described by Ruetsch
et al. (1995), through a careful physical analysis of data obtained by direct numerical
simulation of the full set of compressible equations describing the triple flame. It was
shown that when heat release effects are included, the associated density changes cause
the stream lines of the flow to diverge ahead of the flame tip, causing a reduction in
the local flow speed. To stabilize the triple flame, the upstream speed must increase,
that is the triple flame moves faster. Further, since the mixture fraction Z(X,Y ) is
advected like a passive scalar, the mixture fraction gradient just ahead of the flame is
reduced, resulting in a further increase in the flame speed due to decreased curvature.
Except in situations where the reactants are diluted by an inert component, the value
of α is quite large (α ∼ 0.8), so that the heat release effect plays a dominant role in
determining the flame speed.

The objective of the present study is to extend the work of Dold and Hartley &
Dold discussed above to include some of the effects of heat release. Our strategy
will be to treat density changes due to heat release as a small perturbation to the
constant-density solution. To do this we first derive a solution to the constant-density
case that is considerably simpler than that presented by Hartley & Dold, by invoking
the ‘parabolic flame path approximation’ discussed in § 3.1.

In order to avoid unnecessarily long algebraic calculations, we will, from now on,
assume that ν0 = ν1 = ν and m0 = m1 = m. This ensures that the triple flame is
symmetric with respect to the centreline. Further, we will assume a linear mixture
fraction profile:

Z(X,Y ) = 1
2
[1 + µY ]. (3.1)

The µ so defined is the dimensionless mixture fraction gradient.

3.1. Solution in parabolic-cylinder coordinates

In the limit of large β, the source term on the right of (2.25) may be neglected as
exponentially small, except in a thin reaction zone, the ‘flame front’. The solution is
therefore in two parts: an ‘outer solution’ valid everywhere except in the immediate
neighbourhood of the flame front, and an ‘inner solution’ for the reaction zone that
smoothly connects the two branches (the one in front and the one behind the flame)
of the outer solution. Within this approximation of the infinitesimally small reaction
zone, the temperature just behind the flame front may be obtained by setting Y1 = 0
(in the fuel stream, Y > 0) or Y0 = 0 (in the oxidizer stream, Y < 0) in (2.13) and
(2.14), since the component that is deficient is completely consumed. We therefore
obtain, using (2.17) and (2.15),

Θ = 1− µ|Y | (3.2)

just behind the flame surface. Therefore, the reaction rate along the flame front
varies as exp [−βµ|Y |], so that, in taking the limit β → ∞, we must assume the
scaling µ ∼ 1/β in order to obtain a well-defined triple flame. The regimes βµ � 1
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correspond to degenerate triple flames that may have negative propagation speeds
(Dold 1994); these will not be discussed in the present paper. With this scaling, the
effective lateral extent of the reaction zone is |Y | ∼ 1. It should be mentioned here
that the assumption of a linear Z-profile is justified, since the domain of validity of
that approximation is |Y | < 1/µ ∼ β while the reaction zone is effectively confined
to some interval |Y | < R1, where R1 ∼ O(1).

In figure 4, the reaction rate of a triple flame is plotted as a function of the horizontal
coordinates X and Y (the data are from Ruetsch et al. 1995). The exponential fall-off
of the reaction rate ∼ exp [−βµ|Y |] is apparent. Since such properties as the flame
speed and curvature of a triple flame are controlled primarily by the reaction rate,
it seems reasonable to suppose that these properties are determined primarily by
the structure of the immediate vicinity of the flame tip. In the neighbourhood of
the flame tip, the shape of the reaction zone can be approximated by a parabolic
profile in the region |Y | � 1. However, since βµ ∼ 1, it is clear that the reactive
zone extends to distances |Y | ∼ 1, so that the parabolic approximation cannot be
strictly justified over the entire reactive zone. We will assume as a heuristic model that
the unknown flame shape Y = f(X) may be replaced by a parabola in the entire
reactive zone. We call this the ‘parabolic flame path approximation’. Clearly, this is
an ad hoc approximation not unlike the ‘modal truncation’ approach used in various
nonlinear fluid problems where no satisfactory closure can be found. Nevertheless,
we will find that the model gives remarkably accurate results, indicating perhaps that
the quantities we are interested in (flame curvature, speed, temperature distribution)
are rather insensitive to the precise shape of the premixed branch of the flame.

This approximation allows a considerable reduction in the complexity of the prob-
lem since the ‘free boundary’ of the flame front can now be regarded as known,
except for a single parameter (the flame curvature) which must be self-consistently
determined. The essential difference between our treatment and that of Hartley and
Dold described earlier is that we exploit this parabolic representation to achieve
a solution that is analytically much simpler and yet almost identical in accuracy,
though, unlike Hartley and Dold we employ an ad hoc approximation of the flame
path by a parabola.

Since the flame front is a parabola in our model, it is useful to introduce parabolic-
cylinder coordinates defined by

X = 1
2
[ξ2 + η2

0 − η2], (3.3)

Y = ξη. (3.4)

The lines of constant ξ and η are both parabolas (or surfaces of parabolic cylinders
if viewed in three dimensions) and the two families of curves intersect each other at
right angles. We adopt the convention that the parabola η = η0 is the one that defines
the flame surface, so that the flame surface is defined in Cartesian coordinates by the
equation Y 2 = 2η2

0X.

3.1.1. The outer solution

For the ‘outer solution’ the source term on the right-hand side of (2.25) may be
dropped so that we need to solve

∂Θ

∂X
=
∂2Θ

∂X2
+
∂2Θ

∂Y 2
. (3.5)
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The first-derivative term in (3.5) may be eliminated through the substitution

Θ = exp (X/2)F, (3.6)

which gives for F the equation

∂2F

∂X2
+
∂2F

∂Y 2
− F

4
= 0. (3.7)

On transforming to parabolic-cylinder coordinates defined by (3.3) and (3.4), (3.7)
becomes

∂2F

∂ξ2
+
∂2F

∂η2
− 1

4
(ξ2 + η2)F = 0. (3.8)

Equation (3.8) admits separable solutions of the form F(ξ, η) = M(ξ)N(η) where
M(ξ) and N(η) satisfy

d2M

dξ2
+

(
p− ξ2

4

)
M(ξ) = 0 (3.9)

and

d2N

dη2
+

(
−p− η2

4

)
N(η) = 0 (3.10)

respectively. Equation (3.9) is simply the Schrödinger equation for the harmonic oscil-
lator in quantum mechanics, the solution to which is well known (Cohen-Tannoudji,
Dieu & Laloe 1977). The requirement of finiteness in the limit |ξ| → ∞ results in the
‘quantization condition’

p = n+ 1
2
, (3.11)

where n = 0, 1, 2, . . ., and the eigenfunction corresponding to the eigenvalue n is given
by

M(ξ) = Mn(ξ) = exp (−ξ2/4)Hn(ξ), (3.12)

Hn(ξ) being the Hermite polynomial of order n. The solutions to (3.10) have different
analytical forms in front of (η > η0) and behind (η < η0) the curved flame front.
Ahead of the premixed flame (preheat zone)

In the region in front of the premixed flame front (η > η0), known as the ‘preheat
zone’, the fuel and oxidizer are heated by thermal conduction from the reaction zone.
Two linearly independent solutions of (3.10) are U(n+1/2, η) and V (n+1/2, η), where
U(a, z) and V (a, z) are parabolic cylinder functions (Abramowitz & Stegun 1970) that
have the following asymptotic representation for large values of z:

U(a, z) ∼ exp (−z2/4)z−a−1/2

{
1− (a+ 1/2)(a+ 3/2)

2z2
+ · · ·

}
, (3.13)

V (a, z) ∼
√

2

π
exp (z2/4)za−1/2

{
1 +

(a− 1/2)(a− 3/2)

2z2
+ · · ·

}
. (3.14)

The solution V (n + 1/2, η) ∼ √2/π exp (η2/4)ηn gives Θ = exp (X/2)F ∼ ηn. Since
only solutions that satisfy Θ → 0 as η →∞ are acceptable, we have

Nn(η) = U(n+ 1/2, η). (3.15)
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A general solution for Θ may be constructed by linear superposition:

Θ(ξ, η) = exp [(η2
0 − η2)/4]

∞∑
n=0

anHn(ξ)U(n+ 1/2, η), (3.16)

where use has been made of (3.3), (3.6), (3.12) and (3.15). Since the temperature just
behind the partially premixed front is given by (3.2) and since the temperature must
be continuous across the flame surface, we have the boundary condition

Θ(ξ, η0) = 1− µη0|ξ|. (3.17)

The requirement that (3.16) reduce to (3.17) on the flame front η = η0 determines the
coefficients an as follows:

an =

∫ +∞

−∞
{1− µη0|ξ|}Hn(ξ) exp (−ξ2) dξ

2nn!
√
πU(n+ 1/2, η0)

. (3.18)

Clearly, only even coefficients are non-zero. Note that, since µ = B/β ∼ O(1/β),
an ∼ O(1/β) for all n except n = 0. Thus, replacing the parabolic cylinder function
U(1/2, η) by its expression in terms of the complementary error function (Abramowitz
& Stegun 1970) gives

Θ(0) =
erfc (η/

√
2)

erfc (η0/
√

2)
+ O(1/β). (3.19)

Behind the premixed flame
Behind the partially premixed flame front, the X-axis is a line of discontinuity

of the first derivative (∂Θ/∂Y ), since the diffusion flame is a heat source. Along
the diffusion flame, the source term in (2.25) is almost exactly balanced (Burke &
Schumann 1928) by the lateral diffusion of heat represented by the term ∂2Θ/∂Y 2, so
that X-derivatives are vanishingly small. Thus, the appropriate boundary condition
along the line Y = 0 (X > 0) is

Θ(X, 0) = 1. (3.20)

It is easily verified that Θ = 1 − µY satisfies (3.5) in the region defined by X > 0

and 0 < Y <
√

(2η2
0X) subject to the boundary conditions (3.2) and (3.20). It is

therefore the unique outer solution in the region behind the partially premixed front
with Y > 0. Since the solution must be symmetric with respect to the Y -axis, the
general result, valid for any sign of Y is

Θ(X,Y ) = 1− µ|Y |, (3.21)

for X > 0 and Y 2 < 2η2
0X. Since µ = B/β ∼ O(1/β), the following approximate form

may be used behind the premixed front:

Θ(X,Y ) = 1 + O(1/β). (3.22)

3.1.2. The inner solution and asymptotic matching

We now determine the solution to (2.25) in the immediate vicinity of the reaction
zone. The analysis that follows closely parallels the AEA solution for the planar
premixed flame (Liñán & Williams 1993). Equation (2.25) may be written in parabolic-
cylinder coordinates as follows:

ξ
∂Θ

∂ξ
− η∂Θ

∂η
=
∂2Θ

∂ξ2
+
∂2Θ

∂η2
+ λ(ξ2 + η2)F(1 + µξη,Θ) exp [−β(1−Θ)] . (3.23)
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The differential element of length orthogonal to the flame front at some location

(ξ0, η0) on the flame surface is ds =
√

dX2 + dY 2 =
√
η2

0 + ξ2
0 dη. Since the flame

thickness ∼ 1/β, an appropriate inner variable is τ = β(η − η0). We also define the
new variable θ which is the deviation of the temperature from that on the flame
surface scaled to order unity:

Θ = 1− µη0|ξ| − θ

β
. (3.24)

We now rewrite (3.23) in terms of these scaled variables, expand θ(ξ, τ) in an asymp-
totic series in 1/β, and retain only leading-order terms to derive

θττ = Λ0(ξ
2 + η2

0)θν(θ + 2Bη0|ξ|)ν exp (−θ) exp (−Bη0|ξ|), (3.25)

where B ≡ βµ ∼ O(1) and we have expanded the eigenvalue λ as λ = β2ν+1(Λ0 +
β−1Λ1 + · · ·). Equation (3.25) can be integrated using the boundary condition θτ(τ =
0) = 0 to give

θ2
τ (τ→ +∞) = 2Λ0(ξ

2 + η2
0) exp (−Bη0|ξ|)Fν(2Bη0|ξ|), (3.26)

where the function Fν is defined as

Fν(α) =

∫ ∞
0

θν(θ + α)ν exp (−θ) dθ. (3.27)

To determine the eigenvalue Λ0 we now enforce the asymptotic matching condition

Θη(ξ, η → η0) = −θτ(ξ, τ→∞), (3.28)

where the Θ on the left-hand side refers to the outer solution and the θ on the
right-hand side refers to the inner solution.

To determine the left-hand side of (3.28) we first note that since µ = B/β ∼ 1/β,
(3.18) may be written as

an =
δn,0

U(1/2, η0)
+ O(1/β), (3.29)

where δn,0 is the Kronecker delta symbol. Using known (Abramowitz & Stegun 1970)
recursion relations for the parabolic cylinder function U, we have

Θη(ξ, η0) = −
∞∑
n=0

anU(n− 1/2, η0)Hn(ξ) = −U(−1/2, η0)

U(1/2, η0)
+ O(1/β). (3.30)

The functions U(±1/2, z) can be expressed (Abramowitz & Stegun 1970) in terms of
the exponential and the complementary error function erfc , so that (3.28) may be
written using (3.30) and (3.26), retaining only lowest-order terms in 1/β, as

U(−1/2, η0)

U(1/2, η0)
≡
√

2

π

exp (−η2
0/2)

erfc (η0/
√

2)
=
[
2Λ0(ξ

2 + η2
0) exp (−Bη0|ξ|)Fν(2Bη0|ξ|)]1/2 .

(3.31)
In order that the inner and outer solutions match smoothly over the entire flame

path, the condition (3.31) should hold for any value of ξ. If we expand the right-hand
side in a Taylor series in ξ and enforce the equality at each order, we obtain an
infinite number of equations to determine just two free parameters, Λ0 and η0. The
problem is over constrained because the outer solution used in its derivation invokes
the approximation that the flame path is a parabola which is valid only locally near
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ξ = 0. Thus, in order to be consistent, we must enforce (3.31) only up to second-order
terms in ξ. Equating coefficients of the term ξ0 in (3.31) we get√

2Λ0Γ (2ν + 1) =

√
2

π

exp (−η2
0/2)

η0 erfc (η0/
√

2)
(3.32)

where Γ is the Gamma-function. The linear term on the right-hand side of (3.31) is
identically zero. Equating the coefficients of the quadratic term ξ2, we obtain

η0 =
[4ν − 2]1/4

√
B

. (3.33)

In the limit µ→ 0 with β fixed, B → 0, so that (3.33) implies η0 →∞, corresponding
to a stoichiometric plane flame with the flame surface given by X = Y 2/(2η2

0) = 0.
Using the asymptotic representation (Abramowitz & Stegun 1970)

erfc (x) ∼ 1√
π

exp (−x2)

x
(3.34)

valid for large x, we have

Λ0 =
1

2Γ (2ν + 1)
. (3.35)

Further, since Λ0 = λ/β2ν+1 + O(1/β), the last equation may also be written as

λ =
β2ν+1

2Γ (2ν + 1)
(3.36)

at leading order in 1/β. Equivalently, using the definition (2.21) of λ, we may rewrite
it in terms of physical variables:

U∞ = US
∞ =

[
2mkAνΓ (2ν + 1)

β2ν+1

(ρ∞
2

)2ν−1

exp (−β/α)
]1/2

, (3.37)

the well known (Liñán & Williams 1993) expression for the speed of a stoichiometric
plane flame. In deriving (3.37) we combined (2.15) and (2.16) to express the heat
released per reaction as Q = 2mνcpαTs.

Using (3.37) and (2.21), equations (3.32) and (3.33) may also be rewritten as follows:

U∞
US∞

=
√
π/2 η0 exp (η2

0/2) erfc (η0/
√

2), (3.38)

k

US∞

1

Zs

∂Z

∂y
=

√
4ν − 2

βη2
0

U∞
US∞

, (3.39)

k

US∞
κ =

1

η2
0

U∞
US∞

. (3.40)

Here U∞ is the speed of the triple flame in physical units, κ ≡ d2x/dy2 is the
flame curvature, ∂Z/∂y is the fuel mixture fraction gradient in dimensional units,
Zs = Z(0) = 1/2 is the stoichiometric mixture fraction, and, US∞ is the stoichiometric
planar flame speed given by (3.37). Equations (3.38)–(3.40) determine in parametric
form (with parameter η0) the triple flame speed and curvature as a function of the
imposed mixture fraction gradient. It should be noted that the Zeldovich number,
β, enters into this equation only in the combination β(∂Z/∂y). These equations are
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our principal results in the low-heat-release case, and are discussed further in the
following section.

A quantity often of interest is the integrated heat release in the flame. The jump
in the normal component of ∇Θ across the premixed branch, Ωp(ξ), and, across the
diffusion branch, Ωd(ξ), are proportional to the integrated reaction rates (or heat
release) across the appropriate branches. We have, from (3.30) and (3.21),

Ωp(ξ) =
1√

ξ2 + η2
0

[ ∞∑
n=0

anHn(ξ)U(n− 1/2, η0)− µ|ξ|
]

(3.41)

and

Ωd(ξ) = 2µ. (3.42)

The reaction rate integrated in the y-direction is a quantity more easily evaluated from
numerical simulation data. From purely geometrical considerations, the following
expression may be written down for the y-integrated reaction rate normalized by the
reaction rate integrated across the diffusion branch:

ΩY (X) =

 1 +

√
ξ2 + η2

0

2µ|ξ| Ωp(ξ) if X > 0

0 if X < 0,

(3.43)

where ξ = ±√2X. This expression is used in the next section for comparison with
data from numerical simulations.

3.2. Discussion of solution

The normalized flame speed determined as a function of the dimensionless mixture
fraction gradient (k/US∞)Z−1

s (∂Z/∂y) from the pair of equations (3.38) and (3.39) is
shown in figure 5 as a solid line. The data from figure 8(b) of Hartley & Dold (1991)
are shown by the symbols. The Zeldovich parameter β = 7.5. The two results are in
excellent agreement. Our result differs from that of Hartley & Dold (1991) in that we
have an explicit analytic expression, defined by (3.38) and (3.39), for the flame speed,
whereas Hartley & Dold generate the data in their figure 8(b) by numerically solving
an integral equation (equation(26) in their paper). However, they do provide analytic
expressions in the two limits µβ � 1 and µβ � 1. Further, our outer solution for the
temperature field defined by (3.16) and (3.21) is obtained explicitly whereas in Hartley
& Dold (1991) it is only given implicitly as the solution of an integral equation
which needs to be solved numerically. This simplification, however, has been made
at the expense of rigour. The theory of Hartley & Dold is the rigorous asymptotic
(β → ∞) theory whereas our results invoke the additional ad hoc approximation of
the parabolic flame path. The close agreement between these two sets of data is quite
remarkable.

We now present comparisons between our theoretical results and numerical simu-
lations of (2.25). The numerical methods for doing this have been described in detail
elsewhere (Lele 1992; Poinsot & Lele 1992). For computational efficiency we choose
a fully incompressible two-dimensional code. The Z-profile at the inlet is chosen as
fully linear: Z = (1 +µY )/2. Throughout this section the Zeldovich parameter is held
fixed at β = 15, while the normalized mixture fraction gradient (k/US∞)Z−1

s (∂Z/∂y) is
varied.

In figure 6 we show the dependence of the normalized flame speed U∞/US∞ on
the dimensionless mixture fraction gradient (k/US∞)Z−1

s (∂Z/∂y). The solid line is
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Figure 5. Normalized flame speed as a function of the dimensionless MFG according to equations
(3.38) and (3.39) (solid line) and according to Hartley & Dold (1991) (symbols) for β = 7.5.
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Figure 6. The normalized speed of the triple flame as obtained from numerical simulation (symbols),
and, as given by equations (3.38) and (3.39) (solid line) as a function of the dimensionless MFG.

obtained from (3.38) and (3.39) and the symbols are the numerical data. The theory
correctly predicts the qualitative nature of the variation of the flame speed; however,
the theoretical values are too low by about 10%. This is consistent with asymptotic
theory since the term next to leading order in the expansion of the flame speed is
expected to be smaller by a factor of 1/β ≈ 0.07 when β = 15. This is also consistent
with past experience since comparisons between computations and AEA for planar
premixed flames give similar levels of accuracy (Peters 1982).

The contours for the reaction rate are shown in figure 7 for a value of the
dimensionless mixture fraction gradient of 0.1. Superposed on them is the parabola
with curvature given by the theoretical formula (3.40). The correspondence between
the true reaction path (flame surface) and the theoretically determined parabola is
reasonably good.

Figure 8 shows the theoretical value for the relative temperature change Θ(X, 0)
along the X-axis as provided by (3.16) and (3.21). The agreement between theory and
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Figure 7. Isocontours of reaction rate (solid line) from numerical simulations superposed on theo-
retical reaction path (symbols) with curvature obtained from (3.40). The dimensionless MFG is 0.1.
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Figure 8. The temperature profile Θ(X, 0) as obtained from numerical simulations (symbols), and,
as given by equation (3.16) (solid line) as a function of X. The dimensionless MFG is 0.05.

simulation is excellent. The value of Θ behind the flame in the simulation is slightly
less than unity because of the existence of an ‘inner solution’ for the diffusion branch
the structure of which is well known (Liñán & Crespo 1976). The effect of this inner
solution is to allow some leakage of fuel and oxidizer across the stoichiometric line
so that the maximum temperature reached is less than the adiabatic value, Θ = 1.

Figure 9 shows the temperature along the Y -axis, Θ(0, Y ). The definition of the
triple point is not without ambiguity in the case of the numerical simulation, since,
unlike in the theory, the flame thickness is small but finite. The location of the
triple point may be associated with the point where the reaction rate is maximum.
Alternatively, the point where Θ(X, 0) first reaches its maximal value could be used.
The numerical simulation is therefore represented by two curves one of which (the
circles) identifies the triple point (the origin of coordinates) with the maximum
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Figure 9. The temperature profile Θ(0, Y ) as obtained from numerical simulations (symbols), and,
as given by equation (3.16) (solid line) as a function of Y . In the simulations, the flame has finite
thickness so the tip of the flame is not uniquely defined. The two types of symbols correspond to
two different ways of defining the flame tip (see text). The dimensionless MFG is 0.05.

reaction rate and the other (the crosses) identifies the triple point with the maximum
of the temperature. The curves corresponding to these two choices are nevertheless
quite close and the agreement with theory is seen to be quite good.

Figure 10 shows the reaction rate integrated in the Y -direction as a function of X,
normalized by the integrated reaction rate across the diffusion branch. The theoretical
value of this function is given by (3.43) while the corresponding numerical simulation
result has been obtained by numerically integrating the reaction rate data in the Y -
direction. The correspondence between theory and simulation is seen to be reasonable.
The theoretical curve has a ∼ 1/

√
X type integrable singularity at the origin. This is

a simple geometrical consequence of integrating in a direction tangential to the flame
front of an infinitely thin flame. The slight oscillation of the theoretical curve for
X > 4 is a numerical artifact of attempting to evaluate the right-hand side of (3.41)
by replacing the infinite sum by a finite one. The construction of the outer solution
involves representation of the non-smooth ‘top-hat’ function, (3.17), by an infinite
series of Hermite polynomials. Truncation of this series to a finite number of terms
during numerical evaluation results in these ‘Gibbs-oscillations’ as seen in figure 10.
The oscillations have been minimized by generating the curve for all integer values
of n between 2 and 8 and then taking their average.

4. Effect of heat release
The analyses of Dold (1989) and Hartley & Dold (1991) neglect density changes

in the triple flame due to heat release and the consequent modification of the flow
field around the triple flame. However, numerical simulation (Ruetsch et al. 1995) of
the full set of compressible equations (2.1)–(2.6) shows that such density changes due
to heat release have important qualitative effects on the structure and propagation
speed of a triple flame. As pointed out by Ruetsch et al. (1995), the heat released
within the curved flame front causes an entropy jump across the flame. The resulting
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Figure 10. The reaction rate integrated over all Y , plotted as a function of X, for theory (solid line)
and simulation (dashed line). Normalization is by the reaction rate integrated across the diffusion
flame (essentially constant in the simulation and exactly constant in the theory). The dimensionless
MFG is 0.1 and β = 15.

jump in the thermodynamic and flow variables across the flame as determined by
the Rankine–Hugoniot conditions for the continuity of mass, momentum and energy
lead to an outward deviation of the streamlines in front of the triple flame. The
streamlines tend to diverge in front of the flame. There are two important qualitative
effects of this streamline divergence as pointed out by Ruetsch et al. (1995). First,
in a frame in which the flame is stationary, the fluid velocity at the flame tip is less
than the upstream value. Since, for equilibrium, the fluid velocity at the tip of the
flame must match the stoichiometric burning speed (reduced somewhat by curvature
effects) the fluid velocity far upstream must be larger than it would be without this
compressibility effect. Thus, in a frame in which the fluid is at rest in the far field, the
triple-flame propagation speed is increased by compressibility effects. The other effect
of this streamline divergence is that the mixture fraction gradient at the flame tip is
reduced compared to its upstream value. This follows since the fuel mixture fraction
Z evolves like a passive scalar so that two neighbouring values of Z are pulled apart
as they get advected by the fluid (diffusion has an additional smoothing effect but it
does not change the qualitative fact that gradients of Z are reduced). As discussed
in the previous section, it is the mixture fraction gradient that causes the flame to
curve, and curvature enhances heat loss and therefore reduces flame speed. Thus, the
reduction of the mixture fraction gradient causes the flame to have less curvature
and higher propagation speed than one without such compressibility effects. Another
important effect of this reduction of the mixture fraction gradient is that it can enable
a triple flame to exist in locations within the flow field where the mixture fraction
gradient would otherwise be large enough to cause quenching of a pure diffusion
flame (Domingo & Vervisch 1996).

In this section we extend the results of § 3 to include the lowest-order effects of
heat release. In § 4.1, § 4.2 and § 4.3 we linearize about the base solution of § 3 to
derive the lowest-order perturbation in the uniform flow field. This is then used in
§ 4.2 and § 4.3 to compute the reduced mixture fraction gradient and the pertubation
in the outer solution for the temperature field respectively. The speed and curvature
of the triple flame is determined in § 4.4 by matching the new outer solution with the
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inner solution. A physical discussion of these results together with comparisons with
numerical simulations are presented in § 4.5.

4.1. Flow modification due to heat release

Variation of temperature across the curved premixed front can lead to vorticity
production through the baroclinic mechanism. The equation for the generation of
vorticity, ω = ωẑ may be written in dimensionless units as

$
D

Dt

(ω
$

)
=

1

M2

(∇$ × ∇p
$2

)
. (4.1)

Here $ is the density normalized by ρ∞, p is the pressure normalized by p∞, the
vorticity ω has been normalized by U2∞/k and the Mach number is defined as
M = U∞/cs where the sound speed cs may be taken equal to its value far upstream.
Variations of pressure and density tangential to the premixed front are due to the
gradient of the mixture fraction, so that we have the estimates (∇p/p)t ∼ M2µ and
(∇ρ/ρ)t ∼ µ. On the other hand, the variation across the flame front is due to heat
release and is controlled by the parameter α, so that (∇p/p)n ∼M2α and (∇ρ/ρ)n ∼ α
(the suffix ‘t’ or ‘n’ indicates tangential or normal component respectively). Therefore,
the right-hand side of (4.1) is of the order of µα = Bα/β. Since we are concerned with
the regime B ∼ O(1), α � 1 and β � 1, baroclinic generation of vorticity may be
neglected. In the presence of molecular viscosity a term proportional to ∇2ω must be
added to the right-hand side of (4.1). However, this does not change our conclusion
regarding the irrotational nature of the flow, since in the absence of rigid boundaries
the viscous term is not in itself a source of vorticity but merely serves to diffuse the
(negligible) vorticity generated through the baroclinic mechanism. In more realistic
combustion models the viscosity can vary across the flame due to temperature changes
and this can be an additional source of vorticity. Numerical simulations do show that
vorticity is generated by the premixed front, but the magnitude of this vorticity is
small as expected. Thus, we may describe the velocity perturbation using a potential
Ψ (X,Y ) so that

U = 1 + αΨX + · · · , (4.2)

V = αΨY + · · · . (4.3)

On substituting the above equations and (2.23) in the continuity equation (2.24),
expanding in an asymptotic series in α, we have at the leading order

ΨXX +ΨYY = Θ
(0)
X , (4.4)

where Θ(0), the leading order term in

Θ = Θ(0) + αΘ(1) + · · · , (4.5)

is given by (3.16) and (3.21) outside the inner reaction zone. Since µ = B/β ∼ O(1/β),
we may use the approximation (3.19) and (3.22) for Θ(0) in (4.4) and after transforming
to parabolic-cylinder coordinates, we have

Ψξξ +Ψηη = 0 (4.6)

behind the premixed front and

Ψξξ +Ψηη = ση exp

(
η2

0 − η2

2

)
(4.7)
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in front of it, where, for brevity,

σ−1 =
√
π/2 exp (η2

0/2) erfc (η0/
√

2). (4.8)

The (X,Y )-plane is mapped in (ξ, η)-space onto the half-plane +∞ > ξ > −∞ and
∞ > η > 0. The X-axis is mapped onto the two lines ξ = 0 (η > 0) and η = 0
(+∞ > ξ > −∞). Symmetry requires that V must vanish on the X-axis, and this
translates in (ξ, η)-space to the two conditions

Ψξ(0, η) = 0, (4.9)

Ψη(ξ, 0) = 0 (4.10)

(η > 0 and +∞ > ξ > −∞); the former is satisfied by all solutions that are symmetric
in ξ.

The solution to (4.6) and (4.7) subject to the boundary condition (4.9) and the
requirement that the velocity perturbation should vanish far upstream is clearly
Ψ (ξ, η) = Ψ0(η) where

d2Ψ0

dη2
= ση exp

(
η2

0 − η2

2

)
(4.11)

for η > η0 and

d2Ψ0

dη2
= 0 (4.12)

for η0 > η > 0. The solution to (4.12) in the region η0 > η > 0 subject to the boundary
condition Ψ ′0(0) = 0 (which follows from (4.10)) is Ψ0(η) = C where C is a constant.
Since the velocity potential is determined only up to a constant we may take C = 0
without loss of generality. Thus,

Ψ0(η) = 0, (4.13)

for η0 > η > 0. Since the temperature and hence the density is continuous across the
reaction zone, the velocity too must be continuous. Continuity of the velocity and
velocity potential across the flame front requires that in the region ∞ > η > η0 we
must solve (4.11) with the boundary conditions

Ψ0(η0) = Ψ ′0(η0) = 0. (4.14)

The solution is easily found by integration. Thus,

Ψ0(η) =
erfc (η/

√
2)

erfc (η0/
√

2)
+ σ(η − η0)− 1 (4.15)

for η > η0 and

Ψ0(η) = 0 (4.16)

for η 6 η0.
The velocities along the axes X = 0 and Y = 0 are determined from (4.15) and

(4.16) as

U(X, 0) =

 1− ασ√
η2

0 − 2X
[1− exp (X)] if X < 0

1 otherwise

(4.17)

and

V (0, Y ) =
ασξ

η2
0 + 2ξ2

[
1− exp (−ξ2/2)

]
, (4.18)
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where Y = ξ
√
ξ2 + η2

0 . These results will be compared to numerical simulations in
§ 4.5.

The theoretical result, (4.17), does show the expected decrease in fluid velocity in
front of the triple flame. However, upon crossing the flame, the fluid speed rises
only to the level of the upstream value. Numerical simulations, however, show that
on crossing the flame front, the fluid velocity increases sharply, overshooting the
upstream value. It only returns to the upstream value far behind the flame front (see
e.g. Ruetsch et al. 1995 or figure 14 of this paper). This qualitative behaviour is not
correctly predicted by our model. This appears to be due to neglect of order-1/β
terms in this simplified analysis, which essentially amounts to ignoring the decay of
the temperature gradient along the premixed wing of the flame. If the temperature
gradient is artifically cut off at |Y | = 1/µ, the overshoot behaviour is recovered.

4.2. Reduction of the mixture fraction gradient near the flame tip

It is clear from (4.18) that line elements along the Y -axis get stretched as they are
advected towards the flame, reducing the mixture fraction gradient at the flame tip
relative to its upstream value. To calculate the amount of this reduction we must
compute the perturbation, ζ, in the mixture fraction field due to heat release:

Z = 1
2
(1 + µY ) + αζ + · · · . (4.19)

To find an equation for ζ, we substitute (4.19) in (2.22), expand all dependent variables
in asymptotic series in α and drop all terms of order α2 or higher. This gives

∂2ζ

∂X2
+
∂2ζ

∂Y 2
− ∂ζ

∂X
=

1

2
µ
∂Ψ

∂Y
, (4.20)

which may be written in parabolic-cylinder coordinates as

∂2ζ

∂ξ2
+
∂2ζ

∂η2
− ξ ∂ζ

∂ξ
+ η

∂ζ

∂η
=

1

2
µ

(
η
∂Ψ

∂ξ
+ ξ

∂Ψ

∂η

)
. (4.21)

Since Ψ is a function of η only, Ψ (ξ, η) = Ψ0(η) (where Ψ0(η) is given by (4.15) and
(4.16)), equation (4.21) is solved by

ζ(ξ, η) = ξF(η), (4.22)

where F(η) satisfies

F ′′ − F + ηF ′ = 1
2
µΨ ′0(η). (4.23)

Behind the premixed flame
Since by symmetry we must have Z = 1/2 on the centreline, the following boundary

conditions must hold behind the premixed front (η < η0):

ζ(0, η) = 0, (4.24)

ζ(ξ, 0) = 0, (4.25)

which implies

F(0) = 0. (4.26)

Behind the premixed front Ψ0(η) = 0, so that the solution to (4.23) subject to (4.26) is

F(η) = aη, (4.27)

where a is a constant yet to be determined.
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Ahead of the premixed flame (preheat zone)
Using the solution (4.15), in the preheat zone, (4.23) becomes

F ′′ − F + ηF ′ =
1

2
µσ

[
1− exp

(
η2

0 − η2

2

)]
. (4.28)

Since Z and its first derivatives must be continuous across the flame front, we must
solve (4.28) in ∞ > η > η0 subject to the initial conditions

F(η0) = aη0, (4.29)

F ′(η0) = a. (4.30)

We seek a solution to (4.28) in the form

F(η) = ηf(η). (4.31)

Then f(η) satisfies

f′′ +
(
η +

2

η

)
f′ =

1

2η
µσ

[
1− exp

(
η2

0 − η2

2

)]
. (4.32)

This is a linear equation in f′ and therefore can easily be solved in closed form. The
solution subject to the boundary conditions (4.30) is

f(η) = a+
1

2
µσ

[(
1

η0

− 1

η

)
−
∫ η

η0

dt

(
1

2
+

1

t2
− η2

0

2t2

)
exp

(
η2

0 − t2
2

)]
. (4.33)

Clearly, f(η) is finite as η →∞, so that

f(η) ∼ A0 +
A1

η
+
A2

η2
+ · · · , (4.34)

where A0, A1, A2, . . . are constants. Thus,

ζ(ξ, η) = ξηf(η) = Y

[
A0 +

A1

η
+ · · ·

]
. (4.35)

Now, if we keep Y fixed and let X → −∞ (or equivalently η → ∞) we must have
ζ → 0. Therefore, (4.35) implies that we must require

A0 = f(∞) = 0. (4.36)

The unknown constant a can now be determined by imposing the condition f(∞) = 0
in (4.33) and evaluating the resulting integrals. After some algebra, the result can be
written in a remarkably simple form as follows

a =
µ

4
(η2

0 − ση0 − 1). (4.37)

The modified mixture fraction field Z = (1 + µY )/2 + αζ along the surface of the
premixed flame may be written as

Z(ξ, η0) = 1
2
(1 + µ′Y ) (4.38)

where µ′ = µ+ 2αa. Using (4.37) we have

µ′

µ
= 1− α

2
(1 + ση0 − η2

0) (4.39)

which gives the extent of the reduction in the mixture fraction gradient due to heat
release.
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4.3. The modified outer solution for the temperature

The stretching of line elements by the diverging flow in front of the triple flame would
also have the effect of altering the temperature field in the preheat zone. To determine
this, we must substitute (4.5), (4.2) and (4.3) in (2.19). The leading-order term in α
then gives (3.5) for Θ(0) and at the next order we obtain

Θ
(1)
X −Θ(1)

XX −Θ(1)
Y Y = Θ(0)Θ

(0)
X −ΨXΘ

(0)
X −ΨYΘ

(0)
Y (4.40)

everywhere except in the reaction zone. The right-hand side of this equation is known
from the leading-order solution. On substituting (3.19), (3.22), (4.15) and (4.16) in the
right-hand side, we obtain, after some simplification

ξΘ
(1)
ξ − ηΘ(1)

η −Θ(1)
ξξ −Θ(1)

ηη = σ exp

(
η2

0 − η2

2

)[
η erfc (η/

√
2)

erfc (η0/
√

2)

+σ

{
1− exp

(
η2

0 − η2

2

)}]
(4.41)

in the preheat zone (η > η0) and

ξΘ
(1)
ξ − ηΘ(1)

η −Θ(1)
ξξ −Θ(1)

ηη = 0 (4.42)

behind the premixed flame. At the premixed flame surface η = η0, either the fuel or
oxidizer mass fraction must vanish, a condition that may be written in the form

Θ(ξ, η0) =

{
2(1− Z(ξ, η0)) if ξ > 0

2Z(ξ, η0) if ξ < 0.
(4.43)

Substitution of (4.19) and (4.5) then determines the following boundary condition for
Θ(1):

Θ(1)(ξ, η0) = −2a|ζ(ξ, η0)| = −2aη0|ξ|, (4.44)

where a is given by (4.37). The solution to (4.41) and (4.44) in the preheat zone
(η > η0) may be written as

Θ(1)(ξ, η) = T0(η) + T1(ξ, η), (4.45)

where T0(η) is the solution of the system

T ′′0 + ηT ′0 = −σ exp

(
η2

0 − η2

2

)[
η erfc (η/

√
2)

erfc (η0/
√

2)
+ σ

{
1− exp

(
η2

0 − η2

2

)}]
(4.46)

and

T0(η0) = T0(∞) = 0, (4.47)

and T1(ξ, η) is the solution of the homogeneous system

ξ
∂T1

∂ξ
− η∂T1

∂η
− ∂2T1

∂ξ2
− ∂2T1

∂η2
= 0 (4.48)

with boundary condition

T1(ξ, η0) = −2aη0|ξ|. (4.49)

The solution for T1 is readily written down in analogy to (3.16):

T1(ξ, η) = exp [(η2
0 − η2)/4]

∞∑
n=0

bnHn(ξ)U(n+ 1/2, η) (4.50)
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with bn defined as follows:

bn = −2aη0

∫ +∞

−∞
|ξ|Hn(ξ) exp (−ξ2) dξ

2nn!
√
πU(n+ 1/2, η0)

. (4.51)

We do not need the full solution for Θ(1) but only need Θη(ξ, η0) to generate the
matching condition for the inner solution that will determine the flame speed and
curvature. From the solution (4.50) it is clear that ∂ηT1(ξ, η0) ∼ µ ∼ O(1/β) since we
are in the regime B = µβ ∼ 1. Therefore,

Θ(1)
η (ξ, η0) = T ′0(η0) + O(1/β). (4.52)

We now determine T ′0(η0). The general solution to the homogeneous part of (4.46)
(that is, the solution to (4.46) if the right-hand side were zero) is

T0(η) = −√π/2 A erfc (η/
√

2) + B, (4.53)

where A and B are arbitrary constants. We now seek to solve (4.46) by using the
method of variation of parameters. For this purpose we substitute (4.53) in (4.46)
regarding A and B as unknown functions of η. It is readily seen that (4.53) satisfies
(4.46) if A(η) and B(η) are made to satisfy the equations

A′(η) = −g(η), (4.54)

B′(η) =
√
π/2 erfc (η/

√
2)A(η) = −√π/2 erfc (η/

√
2)g(η), (4.55)

where the function g(η) is defined as

g(η) = σ exp (η2
0/2)

[
η erfc (η/

√
2)

erfc (η0/
√

2)
+ σ

{
1− exp

(
η2

0 − η2

2

)}]
. (4.56)

The boundary conditions (4.47) imply

B(∞) = 0, (4.57)

so that (4.55) may be integrated once to give

B(η0) =

√
π

2

∫ ∞
η0

erfc

(
η√
2

)
g(η) dη. (4.58)

It follows from (4.53) and the boundary condition T0(η0) = 0 that

A(η0) =

√
2

π

B(η0)

erfc (η0/
√

2)
. (4.59)

From (4.53)–(4.55) and (4.59),

T ′0(η0) = σB(η0). (4.60)

If g(η) is introduced into (4.58) from (4.56), some of the resulting integrals can be
evaluated in closed form so that we get the final result

Θ(1)
η (ξ, η0) = T ′(η0) + O(1/β) = σJ(η0) + O(1/β) (4.61)

where

J(η0) ≡ σ2

[
π exp (η2

0)

∫ ∞
η0/
√

2

x erfc 2(x) dx− η0

σ
+ 1− 1

2σ2

]
. (4.62)
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4.4. The inner solution and asymptotic matching

In the case of a small but finite α, the procedure for obtaining the inner solution and
carrying out the asymptotic matching is essentially the same as presented in § 3.1.2
with the following minor modifications.

(a) In the reaction rate term, one must use the modified Z-field as derived in § 4.2
so that µ is replaced by µ′ which is given by (4.39).

(b) A multiplicative factor (1 − α)2ν appears in the reaction rate term on account
of the density dependence of the reaction rate.

(c) When matching the temperature gradients at the edge of the reaction zone, we
must use the modified outer solution, that is Θ(0)

η (ξ, η0)+αΘ(1)
η (ξ, η0), where Θ(1)

η (ξ, η0)
is given by (4.61).
Note that the modification of the advection term in (3.23) due to heat release effects
does not affect the inner solution except through the asymptotic matching. This is
because, when the equation is written in terms of inner variables, the advection term
drops out at leading order.

As a result of this procedure, we get in place of (3.38)–(3.40) the following equations
that take into account the effect of heat release at leading order:

U∞
US∞(α)

=
η0

σ
[1 + αJ(η0)] , (4.63)

k

US∞(α)

1

Zs

(
∂Z

∂y

)
0

=

√
4ν − 2

β

1

η2
0

U∞
US∞(α)

, (4.64)

k

US∞(α)
κ =

1

η2
0

U∞
US∞(α)

, (4.65)

where the flame speed is now normalized by the speed of the stoichiometric planar
flame with small but finite α,

US
∞(α) = (1− α)νUS

∞, (4.66)

US∞ being the corresponding speed without heat release effects as given by (3.37). In
(4.63), (4.64), and (4.65) σ and J(η0) are expressions involving η0 as defined in (4.8)
and (4.62) respectively. The suffix in the mixture fraction gradient term, (∂Z/∂y)0,
indicates that this quantity is evaluated at the tip of the triple flame. This is related
to the value of the mixture fraction gradient (∂Z/∂y)∞ far upstream through (4.39),
which may be written in terms of dimensional variables as(

∂Z

∂y

)
0

=

(
∂Z

∂y

)
∞

[
1 +

α

2
(1 + ση0 − η2

0)
]−1

, (4.67)

where we have used the result (1− αA)−1 = 1 + αA+ O(α2) (where A is any quantity
independent of α) to put these equations in a form that does not admit unphysical
values even if α is not necessarily small, though the results may not be reliable unless
α� 1.

In the special case where both the curvature κ and α are small one could perform
an asymptotic expansion in (4.63)–(4.67) with respect to the large parameter η0 and
obtain as a result the following limiting form valid in the limit α� 1 and κ� 1:

U∞
US∞(α)

= 1 + α− k

US∞(α)
κ, (4.68)
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κ =
β√

4ν − 2

1

Zs

(
∂Z

∂y

)
0

, (4.69)

(
∂Z

∂y

)
0

=
1

1 + α

(
∂Z

∂y

)
∞
. (4.70)

4.5. Discussion of the solution

Heat release has two distinct qualitative effects on the propagation speed of the triple
flame. First, the reduction in the fluid velocity in front of the flame due to the effect
of heat release results in an increased propagation speed through the mechanism of
streamline divergence. This effect appears in (4.63) as the additive term proportional
to α in the numerator. Secondly, the mixture fraction gradient in front of the triple
flame is reduced by the streamline divergence. This results in a reduced curvature,
thereby a reduced heat loss and consequently an increased propagation speed. This
effect is taken into account by the terms in the square brackets on the right-hand side
of (4.67).

The effect of heat release on the propagation speed is shown in figure 11, where
the triple-flame speed (normalized by the planar flame speed) is plotted against the
dimensionless mixture fraction gradient (abbreviated as MFG in the figures) which is
defined as (k/US∞(α))Z−1

s (∂Z/∂y) evaluated at the flame tip. The symbols are obtained
from an earlier numerical simulation of the full compressible equations by Ruetsch
et al. (1995) and the solid line is the present theoretical result given by equations
(4.63) and (4.64). Also shown (dashed line), is the result that would be obtained
if the effects of heat release were neglected in the theory (α = 0). It is clear that
for α = 0.75 the correction due to heat release is significant. The deviation from
the simulation data is of the order of 10%, which is rather remarkable taking into
account the fact that α = 0.75 cannot be considered a very small parameter! This
gives reason to hope that, even though the theory has been developed for small heat
release, the results can be used with some confidence in the more realistic parameter
regime, α ∼ 0.8. The numerical simulations of Ruetsch et al. (1995) used temperature-
dependent transport coefficients but the transport coefficients are assumed constant in
our theory. Some of the simulations of Ruetsch et al. (1995) were therefore repeated
with constant values of transport coefficients but this did not change the normalized
flame propagation speed in any noticeable way. The theoretical prediction, (4.67),
for the reduction of the mixture fraction gradient due to flow divergence however
could not be checked against the simulation data. This is because, in the simulations,
a tan-hyperbolic profile is assumed for the Z-field instead of the simpler linear
profile used in the present theory. As a result, the mixture fraction gradient decreases
downstream simply due to diffusive spreading while the strictly linear profile will
show no such effect. Thus, ‘upstream mixture fraction gradient’ is ambiguous for this
freely expanding mixing layer. An acceptable substitute might be the mixture fraction
gradient at the triple-flame location for an otherwise identical simulation but without
the flame. Unfortunately, these data are not available in the paper by Ruetsch et al.
(1995). In the simulation data, the ratio of the mixture fraction gradient, at the flame
tip to its value at the inlet of the computational box decreases rapidly with increasing
mixture fraction gradient, showing that any effect of the flow divergence is masked by
the diffusive spreading of the mixing layer. According to the theory, this ratio should
increase slowly with increasing mixture fraction gradient for a strictly linear mixture
fraction profile.



256 S. Ghosal and L. Vervisch

2.0

1.6

1.2

0.8

0.4

0 0.1 0.2 0.3

Normalized mixture fraction gradient (flame tip)

N
or

m
al

iz
ed

 f
la

m
e 

sp
ee

d

Figure 11. The normalized speed of the triple flame as a function of the dimensionless MFG at the
flame tip for α = 0.75 and β = 8 as obtained from numerical simulations by Ruetsch et al. (1995)
(symbols), theory with heat release effects included (solid line), theory without heat release effects
(dashed line).

A second set of four numerical simulations was performed using the same method-
ology as described in Ruetsch et al. (1995) but for a lower value of the heat release
parameter, α = 0.3, and varying mixture fraction gradients. For better correspon-
dence with the theory we chose constant transport coefficients in these runs. The
simulations were re-run with identical values of all parameters but this time without
the triple flame. The values of the mixture fraction gradient were computed at the
locations where the flame tip of the triple flame would have been. Then this value
can reasonably be identified with the ‘upstream mixture fraction gradient’ used in
the theory where the Z-profile is strictly linear so that this quantity can be defined
without ambiguity. The ratio of the mixture fraction gradient at the triple point to
the corresponding value when there is no flame is plotted in figure 12. The symbols
are the results of the numerical simulations while the solid line represents the theory
given by equations (4.63)–(4.67). In the case of a real flame, which has a finite thick-
ness, the definition of ‘the flame tip’ is somewhat ambiguous. In figure 12, the square
symbols correspond to the situation where the flame tip is identified as the point
where the X-component of the fluid velocity is a minimum while the round symbols
correspond to the situation where the flame tip is identified as the point where the
reaction rate is a maximum. Both determinations are shown in figure 12 so as to give
some indication of the degree of uncertainity inherent in the simulation data. Figure
13 shows the normalized triple-flame speed as a function of the normalized mixture
fraction gradient at the triple point for the simulations with α = 0.3. The agreement
between theory and simulation is seen to be better than for α = 0.75 shown in figure
11. This is what one would expect from a theory valid at small α.

Figure 14(a) shows the X-component of the fluid velocity along the X-axis normal-
ized by the flow speed far upstream (which is the triple-flame propagation speed). The
independent variable is X = xUS∞(α)/k, where x is in physical units. The simulation
corresponds to a dimensionless mixture fraction gradient of 0.063 at the flame tip. The
results for the simulation runs with the other three mixture fraction values are very
similar and are therefore not shown. The dashed line is the result of the numerical
simulation and the solid line is the asymptotic result (4.17). Where the normalized
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Figure 12. The ratio of the MFG at the flame tip to the MFG at the same location in the absence
of the flame for a fixed α = 0.3 and β = 8 as obtained from numerical simulations (symbols) and
theory (solid line). The two types of symbols correspond to two different ways of defining the flame
tip (see text).
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Figure 13. The normalized speed of the triple flame as a function of the dimensionless MFG at
the flame tip for α = 0.3 and β = 8 as obtained from numerical simulations (symbols), theory with
heat release effects included (solid line), theory without heat release effects (dashed line). The two
types of symbols correspond to two different ways of defining the flame tip (see text).

triple-flame speed is required to generate the curves, we use the theoretical value for
the theoretical curve and the simulation result for the curve showing simulation data.
It is seen that in the preheat zone, the two curves do have the same qualitative shape.
However, the theoretical curve does not asymptote to unity far upstream quite as fast
as the simulation data. Further, the theory overpredicts the dip in fluid velocity in
front of the flame, and, unlike the simulation data, does not overshoot the upstream
fluid speed upon crossing the flame front. Figure 14(b) compares the Y -component
of the velocity along the Y -axis given by the asymptotic result (4.18) (solid line) with
the corresponding numerical simulation data (dashed line). The agreement of the two
results is excellent. The excellent prediction of the Y -component of the velocity is
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Figure 14. (a) The X-component and (b) the Y -component of the fluid velocity (normalized by the
triple-flame speed) along the X-axis and Y -axis respectively according to theory (solid line) and
according to numerical simulations (dashed line).

quite fortunate, because this is the critical component that enters into the theoretical
prediction for the triple-flame speed. The perturbation of the X-component of the
velocity does not enter into the theoretical prediction for the flame speed, since its
effect is felt at a higher order.

5. Conclusions
An approximate theory was presented for triple flames in the limit of large activation

energy (large β) and small but finite heat release (α small but non-zero) using the
parabolic flame path approximation. Explicit analytical formulas were presented for
determining the flame propagation speed and the curvature of the triple flame. The
temperature, velocity and reaction rates were expressed analytically. The triple flame
is in fact completely characterized through explicit analytical representation once
a single parameter – the upstream mixture fraction gradient – is known. Detailed
comparisons were made between the theory and numerical simulations of the primitive
equations. Generally good agreement between theory and numerics was observed and
the discrepancies between the two were generally within expected bounds.
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The most important simplification that permitted us to obtain these analytical
results was the replacement of the curved flame front by a parabolic profile, thereby
reducing a free boundary problem to one in which the boundary is known except for
a single parameter, the curvature of the parabola.

Using particle image velocimetry, Muñiz & Mungal (1997) have measured instan-
taneous two-dimensional velocity fields at the location where combustion starts in a
lifted jet flame. Their results show that the zone where the flame is stabilized moves
within the turbulent flow, following the location of the low-velocity region of the jet.
The fluid velocity at the stabilization point was found to take values close to the sto-
ichiometric premixed laminar flame speed. Moreover, the velocity profiles measured
across the flame base features properties similar to those observed in numerical sim-
ulations of triple flames. One may then believe that, in addition to the fundamental
insight and satisfaction that an analytical solution provides, the results presented in
this paper could serve as a starting point for a simplified description of more complex
problems of technological importance, and to provide important insight for physical
understanding of numerical or experimental observations.
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